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Statement of problem studied
Intr ion

Seagrasses are crucial to the continued functioning of coastal
ecosystems and offset human disturbance in a variety of ways. These
underwater meadows function as sediment traps (Ward et al., 1984) and
damp wave action (Fonseca and Calahan, 1992) and current scour (Fonseca et
al., 1982; 1983; Harlin et al., 1982; Bulthuis et al., 1984; Fonseca and Fisher,
1986: Fonseca, 1989). Grassbeds have proximate economic value, because,
as Fonseca and Calahan (1992) suggest, the plants should reduce boat wake
energy along intracoastal waterways and mitigate shoreline and subtidal
erosion; seagrasses can be a cost-efficient alternative to jetties and other
expensive stabilization methods (Fonseca and Fisher, 1986). Seagrass beds,
like other types of submerged aquatic vegetation (SAV), support a
remarkably high species richness and abundance of fauna (e.g., Orth et al.,
1984; Holmquist et al., 1989a; Sogard et al., 1989) and provide an important
nursery habitat for food and game fishes (Zieman, 1982; Livingston, 1984;
Hettler, 1989). High abundances of both commercially-important species
“and smaller forage organisms in seagrass systems are the result of the
predation refugium provided by the complex canopy of grass blades (Lewis
and Stoner, 1983; Leber, 1985; Wilson et al., 1990). Seagrasses exhibit
extremely high primary and secondary production which together form the
underpinnings of other coastal systems external to the seagrass meadows
(Zieman, 1982).

A variety of human activities can directly and negatively impact
seagrasses. Much of this impact is associated with dredging of channels and
other waterway impacts in shallow coastal systems (Zieman, 1982;

Eleuterius, 1987; Livingston, 1987). Initial destruction by dredging is often




considerable (Taylor and Saloman, 1968; Godcharles, 1971; Zieman, 1975),
and increased turbidity and sedimentation stemming from unvegetated
channel bottoms and spoil banks can impose long-term stress on seagrass
systems (Odum, 1963; Van Eepoel and Grigg, 1970; Grigg et al., 1971; Pérés,
1984; Shepherd et al., 1989). These channels provide access to shallow
waters for relatively large vessels, and navigational errors result in
propeller scars (Wanless, 1969; Zieman, 1976; Gonzalez-Liboy, 1979;
Delgado Hyland, 1991) and resuspension of sediments by propeller and wake
scour (pers. obs.). In addition, vessels prefer to anchor in grassbeds,
because anchors grip the rhizome layer more effectively than moorings in
nearby unvegetated sediment; damage from these anchor scars can be
considerable (Williams, 1988; Walker et al.,, 1989). Negative effects of
escaped hydrocarbons from vessels range from large-scale mortality
resulting from spills (Diaz-Piferrer, 1962; Nadeau and Berquist, 1977) to
sublethal effects such as reduced carbon uptake by the grasses (McRoy and
Williams, 1977). Vessels also impact seagrasses by trawling (Eleuterius,
1987) and shading by houseboats (pers. obs.). Other anthropogenous sources
of impact include sedimentation resulting from dam construction, near-
shore development, and borrow pits (Zieman, 1982; Livingston, 1987), pulp
mill effluents (Hooks et al., 1976; Livingston, 1982; 1984), heated effluents
from power plants (Roessler and Zieman, 1969; Zieman, 1970; Thorhaug et
al., 1973), and increased epiphyte cover resulting from eutrophication
(Sand-Jensen, 1977; 1989; Silberstein et al., 1986). When disturbance is

severe enough to remove portions of the seagrass rhizome mat, "blowouts”,

or denuded areas of negative topography, result (e.g., Patriquin, 1975;
Gonzalez-Liboy, 1979; Wanless, 1981).

Forces which open gaps in seagrass canopies impact the associated




benthic fauna as well. The grassbed fauna is directly dependent upon the
seagrass canopy; unvegetated sediment has very low epifaunal abundance
relative to well-developed seagrass canopies (Orth et al., 1984; Summerson
and Peterson, 1984; Wilson et al., 1990; Sogard and Able, 1991). Bare
patches cause an edge effect and are used heavily as foraging areas by large
mobile predators (Heck and Orth, 1980; Holt et al., 1983; Summerson and
Peterson, 1984). Sparse seagrass also supports low numbers of fauna
relative to dense seagrass (e.g., Holmquist et al., 1989b), in large part due to
faunal preference (Bell and Westoby, 1986), and there appears to be a
seagrass density threshold below which recruitment is low (Worthington et
al., 1991) and susceptibility to predation is high (Nelson, 1979; Heck and
Thoman, 1981).

Slow recovery after disturbance is typical for seagrasses (Wanless,
1969; Patriquin, 1975; Turner, 1985; Williams 1988; 1990; Clarke and
Kirkman, 1989: Holmquist, 1992); small impacts such as propeller and
anchor damage can have lasting effects (Zieman, 1976; Gonzalez-Liboy,
1979). Slow recovery makes the transplanting of seagrasses for mitigation
a relatively complex endeavor (Fonseca et al., 1985; 1987a; b; c; Lewis
1987). Most seagrasses, such as Thalassia testudinum, the dominant
seagrass in the subtropical U.S. and Caribbean, are not well adapted for rapid
recolonization, because of a slow rate of rhizome elongation, a low rate of
population growth, few seeds, no seed reserve, poor seedling success, and
low productivity (e.g., Williams, 1990). Thalassia only recolonizes gaps by
perrenation (Williams, 1990), and recovery is particularly slow when
rhizomes are damaged (Patriquin, 1975; Zieman, 1976), because an injured

Thalassia meristem requires about one year for repair (Fuss and Kelly, 1969;

Kelly et al., 1971).




Input of nutrients from coastal development and resuspended
sediments may exacerbate initial anthropogenous disturbance to seagrasses
and greatly protract the already lengthy recovery period for both naturally
recovering and transplanted seagrasses. Disturbance to seagrasses and
eutrophication tend to co-occur in developed coastal areas. Macroalgae are
increasing in importance in many coastal waters because of their rapid
response to nutrient influx (e.g., Shepherd et al., 1989; Lavery et al., 1991;
Sand-Jensen and Borum, 1991); nuisance algae can proliferate to virtually
cover areas on the scale of hectares (Virnstein and Carbonara, 1985) or
occasionally square kilometers (Olafsson, 1988). Unattached algal masses,
10 to 50 cm in diameter, are benthic analogs of terrestrial tumbleweeds and
can roll up to 0.5 km/day (Holmquist, 1994). These algae frequently settle
in sheltered areas (Josselyn, 1977; Zieman et al., 1989) and may tumble into
blowouts and remain entrapped by the wall of undisturbed shoots on the gap
perimeters. Drift nuisance algae may be powerful vagile colonizers, and in
many systems (e.g., Miller, 1982; Sousa, 1985), vagile colonizers are better
able to exploit gaps than are vegetative colonizers. In seagrass-algal
systems, drifting algal masses should be particularly formidable, because
algal clumps arrive as large individuals immediately capable of competing
instead of as small colonizing spores. Algae settling into gaps are likely to
compete directly with vegetatively recolonizing seagrass for light and/or
dissolved gasses. Shoots of aquatic grasses have high light compensation
points and high light saturation levels (Sand-Jensen and Borum, 1991), and
various experiments have shown shading to have negative effects on
seagrasses (Dennison and Alberte, 1982; Bulthuis, 1983; Tomasko and
Dawes, 1989). Algal masses which settle into gaps may intercept

substantial amounts of light above recovering seagrass. Algal mats in other




systems can produce anoxic conditions (Olafsson, 1988; Everett, 1991,
Lavery and McComb, 1991), and underlying, regenerating seagrasses could
suffer from competition for dissolved oxygen.

The differential height of blades within and outside the patch will be
highest immediately after initial disturbance, and algae may be most likely
to be trapped at this time. Disturbance in the seagrass-drift algal system
may result in long-term effects; not only is seagrass slow to recolonize
space, but the probability of further disturbance via algal cover may be
highest immediately after initial gap formation. Repeated removal of blades
slows leaf regrowth and reduces below-ground biomass (references and
discussion in Valentine and Heck, 1991). Re-colonization of canopy gaps
resulting from human disturbance may be greatly slowed, or even fail to
occur, if diffuse nutrient input and associated eutrophication has led to
increased nuisance algal abundance in a given seagrass system. In turn,
transplantation efforts in such a system could be significantly more
difficult.

In addition, large-scale algal cover resulting from such a disturbance-
eutrophication synergism could cause a shift in seagrass species
composition with ensuing consequences for erosion control.  For example,
Halodule wrightii, a species of secondary importance, is inferior to
Thalassia in terms of mitigation of sediment erosion (Fonseca and Fisher,
1986). Relative to Thalassia, Halodule generally has a faster rate of
rhizome elongation, higher rate of population growth, relatively plentiful
seeds, a better seed reserve, higher seedling success, and higher
productivity (Williams, 1990). Halodule wrightii is generally viewed as a
pioneering species and increases in abundance following disturbance,

although Halodule also requires considerable time for recovery and does not




approach the biomass levels of Thalassia (Zieman, 1982; Williams, 1990;
Holmquist, 1992). Because species which are good colonizers are favored in
gaps (Miller, 1982), and because Halodule is a greatly superior colonizer
relative to Thalassia, the former species could dominate disturbed patches
for an extended time if recovery is slowed by the presence of nuisance algae.

Although it seems intuitive that recovery from small disturbances
should be rapid and that recovery from large canopy gaps should be slow, the
inverse relationship could hold when eutrophication is coupled with human
disturbance. Large canopy gaps may “capture” rolling algal masses along
one portion of the gap periphery, but accumulations could be limited by
shifting currents. Conversely, small gaps the size of propeller and anchor
scars may shelter accumulated algae from all directions, because of the tall
flow shadow formed by the close and comparatively tall walls of seagrass
around the gap perimeter. Algal disturbance following the initial impact
could persist indefinitely in gaps resulting from small-scale impact.

Drift algal accumulations are poor "Band-Aids" for disturbed seagrass
assemblages (Holmquist, 1992). Various fauna, particularly caridean and
penaeid shrimp, are reduced in abundance in these algal accumulations
(Holmquist, 1992). Caridean shrimps are important food items for many
grassbed fishes (Zieman, 1982; Livingston, 1982; 1984) and are the
dominant prey for juveniles of commercially important fishes (Rutherford et
al., 1982; 1983; Hettler, 1989); penaeid shrimps are a major fishery
resource. In addition, the habitat quality of drift algal mats may be further
mitigated by ephemerality. Algal mats periodically break up or senesce,
leaving behind bare sediment. Most importantly, the mats inhibit recovery
of seagrass, i.e. the primary source of fauna. Abundant macroalgae and

protracted recovery periods for impacted seagrass meadows should both
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alter the functional biodiversity of the benthic assemblage and reduce

output of recruits to populations of commercial species.

Objectives

The primary objectives of the project were 1) to determine if
recovery following impact to seagrasses along waterways is slowed or
otherwise altered by increased presence of nuisance macroalgae resulting
from eutrophication, and 2) to determine the extent to which recovery rate
is a function of size of initial impact. My null hypotheses were: 1) recovery
of seagrass, and composition of the assemblage of seagrasses, will not
differ between a) denuded seagrass plots from which algae are excluded and
b) denuded plots which allow entry of algae, and 2) recovery rate will not

vary across disturbed plots of differing sizes.

Study Site and Methods

| performed this work at La Parguera, in southwest Puerto Rico. Like
many other coastal systems, the La Parguera area has attracted both
widespread development and heavy boat traffic. ~Anchor and propeller
scarring is common in the area (Gonzélez-Liboy, 1979) as is sediment scour
from vessels greater than 15 m in length (pers. obs.). There has recently
been massive sediment input from housing developments and hillside borrow
sites, and nutrient levels are high as a result of direct, untreated sewage
input from shoreline dwellings. Unattached drift algae of the genus Dictyota
are highly abundant, and cover the surface of most observed blowouts in the
area's seagrass meadows (pers. obs.). The expansive grassbeds in this
system are dominated by Thalassia testudinum, Syringodium filiforme, and

Halodule wrightii (species in descending order of abundance; Vicente, 1975;
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Villamil and Canals, 1981), and serve an important nursery function for
local species (Kolehmainen, 1972; Villamil and Canals, 1981).

| used a series of manipulations designed to test the extent to which
recovery of impacted seagrass is a function of 1) size of initial disturbance,
and 2) increased presence of macroalgae due to eutrophication; null
hypotheses are “no effect”. This work involved a 2 X 3 factorial in blocks
design, blocking for location (n=12; Fig. 1). Treatments and levels were as
follows: Treatment 1= Size of disturbance, Levels: a) Large (1 square meter),
and b) Small (0.25 square meters); Treatment 2= Algal presence, Levels: a)
Unmanipulated Control plots of seagrass against which recovery can be
gauged, b) Disturbed/Unfenced plots which allowed access to algae, and c¢)
Disturbed/Fenced plots which exclude algae. The experiment thus involved a
total of 72 plots. More rapid recovery on the Disturbed/Fenced plots would
suggest that the ambient drift algal population interfered with the recovery
process. .

| randomly selected twelve stations, and in turn randomly selected six
plots at each station. Each of the six plots was allocated to one of the six
levels included in the experiment; | thus blocked for location. Prior to the
experiment, the field team a) counted all short shoots of all seagrass
species, b) counted all green algal holdfasts, c) measured the longest blade
of each short shoot within 1) each of the 36 0.25 square meter plots, and 2)
four randomly-placed 0.25 square meter quadrats in each of the 36 one
square meter plots. Lastly, | subsampled seagrass growth form by
collecting all short shoots and green algae within randomly-placed 15 cm?2
quadrats (one quadrat in each 0.25 square meter plot, two in each one square
meter plot). Short shoots were gathered by hand and transported on ice to

the laboratory where the seagrass shoots of each species were counted and
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measured. These measures included number of short shoots per quadrat,
blade length and width, and number of blades per shoot. | used these
characteristics to calculate the growth form parameters of shoot density,
canopy height, blade density, and leaf area index as per the methods of
Sogard et al. (1987) and Holmquist et al. (1989b). The photosynthetic
portion of all seagrass blades collected within each quadrat was washed in
dilute HC! to remove carbonate epiphytes and sediment and then dried at
95°C for 24 h to determine g dry mass of the standing crop for each sample.
The seagrass growth form parameters, standing crop, and total seagrass

cover were the dependent variables in the study.

After initial sampling, | used modified shovels to remove seagrass on
experimental plots to a depth of 10 cm in order to simulate damage caused
by anchor or propeller scarring; the removed material included a significant
portion of the rhizome layer. Plastic fencing, consisting of 30 cm-tall
walls of 2.5 by 5 cm mesh, was established 5 meters upcurrent of the algal
exclusion plots to block ingress of tumbling algae (Fig. 1). The two denuded
control groups and the unmanipulated controls were not be fenced. The
fencing was supported by PVC stakes and had a 10 cm gap between the
substrate and bottom.

Plots were then surveyed weekly to determine the extent of algal
cover and to remove epiphytes from fencing. We also removed any fence-
hopping algae from the algal exclusion plots on a weekly basis. Although
some algae did bypass the fencing and accumulate on the exclusion plots,
amounts were relatively minimal (see below) and algae were never allowed
to persist on these plots for more than seven days before removal. Seagrass

was censused, as described above, at 2 mo intervals.
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Summary of most important results
Data

The experimental treatments caused severe and long-lasting effects
on seagrasses on our plots (Figs. 2-6; Tables 1-5). After fourteen months of
recovery (at which time the algal barriers were removed), percent seagrass
cover, Thalassia shoots, standing crop, and leaf area index were all still
significantly lower on the two types of disturbed plots (with and without
further algal disturbance) than on the controls; canopy height was the sole
exception. This difference was maintained despite a trend of overall
reduction of Thalassia during the study period, probably due to bedload
transport of sand onto several stations. The disturbed plots remained more
depauperate than the controls twenty months after initial disturbance.

Algal cover was much higher on disturbed/algal access plots than on
controls, and these significant differences persisted for at least twenty
months (Fig. 7; Table 6). Mean algal cover on the disturbed/algal access
plots was initially high (58%) but the level of cover fell steadily in
conjunction with seagrass recovery. Within these experimental plots, there
was significantly higher algal cover initially associated with small
disturbances (mean= 79%) than with large disturbances (38%; Fig. 8). These
differences ceased after about a year of recovery.

Percent seagrass cover and Thalassia shoots were lower on
disturbed/algal access plots than on disturbed/algal exclusion plots
throughout most of the study (Figs. 2-3; Tables 1-2). These two classes of
manipulated plots did not demonstrate consistent significant differences
for standing crop, leaf area index, or canopy height (Figs. 4-6; Tables 3-5).
Recovery, as measured by the entire suite of response variables (exclusive

of canopy height), was slower on the disturbed/algal access plots than on
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disturbed/algal exclusion plots (mean for Kendall's coefficient of
concordance= 0.813, p= 0.039). We were able to contrast recovery as a
function of disturbance size for two parameters: percent seagrass cover and
Thalassia shoots. There were no differences as a function of disturbance
size for seagrass cover (Fig. 9), but there was a higher density of Thalassia
shoots associated with the small disturbances than with the larger

disturbances at the end of the project (Fig. 10).

Significance

It is clear that rhizome-level damage, such as that produced by anchor
and propeller scarring, causes a long-term impact on seagrass meadows.
The experimental plots have not recovered from these relatively small scale
disturbances, and | expect that an additional three years will be required
before recovery is complete. | intend to continue monitoring the plots on a
bi-yearly basis until recovery is complete.

As hypothesized, disturbed plots accumulated more drift algae than
controls because of the negative topography resulting from rhizome and
canopy removal. Further, small plots garnered more algae than large plots;
the results provide a strong indication that this additional algal
accumulation is due to the small gap area : canopy height ratio present in the
small gaps, i.e., once entrained, algal clumps are unlikely to be rolled out of
a small gap because the closely-set canopy walls shield clumps from the
ambient water flow. Thus, in this system, additional disturbance forces
(algal accumulations) are brought to bear on recently disturbed patches, and
the extent of this positive feedback is inversely related to the spatial scale
of initial disturbance. Both of these phenomena diminish with continued

recovery of a gap. The seagrass-algal system therefore demonstrates an




exception to the shifting mosaic model (i.e., recently-disturbed patches
least likely to be disturbed following an initial disturbance). If the shifting
mosaic model obtained in the seagrass-algal milieu, we would expect
increasing intensity of disturbance to accompany recovery rather than the
observed inverse relationship.

Algal accumulations represented a disturbance force that reduced
percent cover and density of Thalassia shoots on plots from which drift
algae were not excluded. Standing crop and leaf area index were not
affected, suggesting that there may have been a degree of compensatory
response in which the reduced number of shoots on the disturbed plots
produced somewhat larger blades. A greater intensity of disturbance fell
upon the smaller plots, but recovery on these gaps was equal to or greater
than exhibited by the large gaps, probably due to the small amount of
perrenation required to seal small gaps. Although algal accumulations did
slow recovery on algal access plots relative to algal exclusion plots, these
effects are likely to be greater in other seagrass systems. Our study area
was a relatively high energy back-reef system in which the sediment had
reduced fines and low organic content; these characteristics are associated
with reduced canopy height (Holmquist et al., 1989 a; b). The canopy heights
on our sites were in fact low (about 100 mm) for subtidal seagrasses. It is
likely that algal retention would have been more pronounced, and seagrass
recovery further slowed, in systems with taller canopies.

Presence of nutrient-limited macroalgae is clearly an important
determinant of seagrass recovery. Large ambient populations of nuisance
macroalgae can slow recovery of anthropogenously-disturbed SAV along
waterways. Relatively minor propeller and anchor damage will likely have

longer-lasting effects if recovery of seagrasses is protracted by

16




eutrophication. The results emphasize the importance of minimizing boating
activity in shallow water immediately adjacent to Waterways, perhaps by
marking shallow grassbeds near channels as being off-limits to power boats.
Further, this work should assist with the development of timetables for
predicting recovery of seagrass-dominated assemblages from disturbance
both in the presence and absence of eutrophication or large nuisance algal
populations; longer recovery periods and continued resuspension of
sediments near channels should probably be anticipated in eutrophic areas.
Information on initial impact and ensuing recovery times provided by this
study should be of use in estimating economic costs associated with
anthropogenous disturbance of seagrasses and in making decisions
concerning seagrass transplantation as part of mitigation programs (e.g., an
ideal mitigation site might be best placed in an area without exogenous

nutrient input or a large macroalgal population).
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Figure legends

Figure 1. Schematic diagram of 2 X 3 factorial in blocks design. The design
blocks for location; each of these treatment levels would be present at each
of twelve stations (squares= disturbed plot boundaries, semi-circles=
fencing, seagrass surrounds all plots). These treatments were established
randomly at each station rather than as shown in the schematic. Disturbed
plots (from which seagrass was removed) were of three sizes. For each size
of disturbance, there was a) an undisturbed control plot of seagrass, b) a
disturbed but unfenced plot which would allow access to algae, and c) a
disturbed but fenced plot which would exclude algae. See text for further

description.

Figure 2. Percent seagrass cover (means; error bars= standard errors) as a
function of algal access and time since disturbance. A horizontal bar
indicates that a given contrast was not significantly different at the 0.05
level (tests performed at the following intervals relative to disturbance:
before, eight months after, and 14 months after). See Table 1 for precise
per contrast and family-wise error rates.

Figure 3. Thalassia shoots/m2 (means; error bars= standard errors) as a
function of algal access and time since disturbance. A horizontal bar
indicates that a given contrast was not significantly different at the 0.05
level (tests performed at the following intervals relative to disturbance:
before, eight months after, and 14 months after). See Table 2 for precise
per contrast and family-wise error rates.

Figure 4. Standing crop (grams dry mass/m2; means; error bars= standard
errors) as a function of algal access and time since disturbance. A
horizontal bar indicates that a given contrast was not significantly
different at the 0.05 level (tests performed at the following intervals
relative to disturbance: before, eight months after, and 14 months after).
See Table 3 for precise per contrast and family-wise error rates.

Figure 5. Leaf area index (m2/m2; means; error bars= standard errors) as a
function of algal access and time since disturbance. A horizontal bar
indicates that a given contrast was not significantly different at the 0.05
level (tests performed at the following intervals relative to disturbance:
before, eight months after, and 14 months after). See Table 4 for precise
per contrast and family-wise error rates.
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Figure 6. Canopy height (mm; means; error bars= standard errors) as a
function of algal access and time since disturbance. A horizontal bar
indicates that a given contrast was not significantly different at the 0.05
level (tests performed at the following intervals relative to disturbance:
before, eight months after, and 14 months after). See Table 5 for precise

per contrast and family-wise error rates.

Figure 7. Percent algal cover (means; error bars= standard errors) as a
function of algal access and time since disturbance. See Table & for per
contrast and family-wise error rates.

Figure 8. Percent algal cover (means; error bars= standard errors) as a
function of size of initial gap size and time since disturbance. P-values
represent results of paired t-tests (one-way) at selected intervals since
disturbance. Contrasts for one and eight months were significant at the
0.032 level following conversion to family-wise error rates via sequential
Bonferroni inequality (Holm, 1979; Rice, 1989).

Figure 9. Percent seagrass cover as a function of size of initial gap size and
time since disturbance. P-values represent results of paired t-tests (one-
way) at selected intervals since disturbance.

Figure 10. Thalassia shoots/m2 as a function of size of initial gap size and
time since disturbance. P-values represent results of paired t-tests (one-
way) at selected intervals relative to disturbance. P-values represent
results of paired t-tests (one-way) at selected intervals since disturbance.
The contrast at fourteen months was significant at the 0.0012. level
following conversion to family-wise error rates via sequential Bonferroni
inequality (Holm, 1979; Rice, 1989).
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